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Abstract. As a generalization of one-dimensional fractional Brownian motion (1dfBm), we
introduce a class of two-dimensional, self-similar, strongly correlated random walks whose
variance scales with power lawN2H (0< H < 1). We report analytical results on the statistical
size and shape, and segment distribution of its trajectory in the limit of largeN . The relevance
of these results to polymer theory is discussed. We also study the basic properties of a second
generalization of 1dfBm, the two-dimensional fractional Brownian random field (2dfBrf). It
is shown that the product of two 1dfBms is the only 2dfBrf which satisfies the self-similarity
defined by Sinai.

1. Introduction

Random walk and Brownian motion have been ubiquitous models in physical and biological
sciences (Wax 1954, Berg 1983). The theory of Brownian motion either focuses on
the nonstationary Gaussian process or treats it as the sum of a stationary pure random
process—the white noise in Langevin’s approach (Fox 1978). Generalization of the classical
theory to the fractional Brownian motion (fBm) (Kahane 1985, Beran 1994), and the
corresponding fractional Gaussian noise (fGn), now includes a wide class of self-similar
stochastic processes whose variances scale with power lawN2H , whereN is the number of
steps in the fBm and 0< H < 1; H = 0.5 corresponds to the classical Brownian motion
with independent steps. The term ‘fractional’ was proposed by Mandelbrot (Mandelbrot and
van Ness 1968) in connection with fractional integration and differentiation. In general the
steps in the fBm are strongly correlated and have long memory. Hence, fBm has become a
powerful mathematical model for studying correlated random motion with wide application
in physics and biology (Ding and Yang 1995, Vladet al 1996). In this letter, we generalize
the one-dimensional fBm to two dimensions (2D). We consider both a stochastic process
in 2D, i.e. a sequence of two-dimensional random vectors{(Bxi , Byi )|i = 0, 1, . . .} and a
random field in 2D{Bi,j |i = 0, 1, . . . ; j = 0, 1, . . .} which is a scalar random variable
defined on a plane. They correspond to the spin dimension 2 and space dimension 2,
respectively, in the theory of critical phenomena in statistical physics (Ma 1976). The most
general fractional Brownian random field will be an-dimensional random vector defined
in a m-dimensional space (Kahane 1985), and there have been studies on such a model in
pure mathematics (e.g. Xiao 1997).
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2. The size and shape of two-dimensional fBm

In two-dimensional fBm (2dfBm),Bx and By are two identical but independent one-
dimensional fBms (1dfBms). The defining property of a 1dfBm,Bk, is its autocorrelation
function (Beran 1994):

E[BkBh] = 〈BkBh〉 = σ 2

2
[h2H − (h− k)2H + k2H ].

HereE[·] and 〈·〉 are notations for expectation value in mathematics and ensemble average
in physics, respectively. Now let’s consider aN -step trajectory of the 2dfBm:

(u0, v0) = (0, 0), (u1, v1), (u2, v2), . . . , (uk, vk), . . . , (uN, vN). (1)

We are interested in the geometry of this trajectory, i.e. the ‘shape’ of theN points in (1),
in a statistical sense. We define the random moment matrix (radius of gyration tensor):(

θuu θuv
θvu θvv

)
(2)

where

θuu =
∑N

k=1 u
2
k

N
−
(∑N

k=1 uk

N

)2

θvv =
∑N

k=1 v
2
k

N
−
(∑N

k=1 vk

N

)2

θuv = θvu =
∑N

k=1 ukvk

N
−
∑N

k=1 uk
∑N

h=1 vh

N2
.

The eigenvalues of the matrix,λ1 and λ2, are known as the squares of the principal
components of the radius of gyration of theN -point object:

λ1+ λ2 = θuu + θvv (3)

|λ1− λ2| =
√
(θuu − θvv)2+ 4θ2

uv. (4)

The eigenvalues characterize the size of the object, whose expectation (ensemble average)
is:〈
λ1+ λ2

2

〉
= σ 2

2N2

N∑
h=1

N∑
k=1

(h− k)2H ∼ σ 2N2H

(2H + 1)(2H + 2)
(N →+∞) (5)

whereσ 2 = Var[Bx ] = Var[By ]. For H = 1
2 the radius of gyration isNσ 2/6 which is well

known in polymer theory (Flory 1969)†. The eigenvalues also characterize the asymmetry
of the object:

|λ1− λ2|
λ1+ λ2

. (6)

Unfortunately, the expectation of (6) is difficult to compute. However, it is relatively easy
to compute the expectations of the square of the numerator and denominator separately,
which leads to the asymmetryAsy proposed by Rudnick and Gaspari (1987):

Asy = 〈(λ1− λ2)
2〉

〈(λ1+ λ2)2〉 . (7)

† When an excluded volume, i.e. steric hindrances, is introduced, the so-called self-avoiding walks (SAW) have
H = 3/(d +2) whered is the dimension of the Euclid space for the polymer (de Gennes 1979). It is obvious that
the fBm is not a faithful model for the SAW in 2D. This raises an interesting question: since the fBm is shown
by Sinai (1976) to be the unique stochastic process possessing self-similarity, what is the relation between fBm
and SAW? This problem is intimately related to the mathematical problem of self-crossing and intersectional local
time where the significance ofH = 3

4 has been noted (Rosen 1987).
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Detailed calculation shows that in the limit of largeN (appendix A):

Asy ≈ 2−
1

2(H+1)2

1
2(H+1)2 + 2H+1

4(4H+1) − 1
4H+3 − 02(2H+2)

0(4H+4)

. (8)

Therefore,Asy = 4
7(= 0.57), 0.81, and 1 forH = 1

2, 3
4, and 1, respectively. 4

7 is in
agreement with the previous calculation 2(d+2)/(5d+4) for d-dimensional random walks
whend = 2 (Rudnick and Gaspari 1987).

3. The distribution of the segments of 2dfBm

In the previous section, we studied the radius of gyration tensor of the finite trajectory
of a 2dfBm, which characterize the size and shape of the trajectory. In this section, we
study the distribution of the segments in a trajectory with respect to the centre of gravity
(Debye and Bueche 1952). For this analysis, it is sufficient to obtain the result for 1dfBm
{Bk|k = 0, 1, . . . , N − 1}. Let us fix our coordinate system to the center of gravity of the
N points:

B̂k = Bk − B0+ B1+ · · · + BN−1

N

where the 1dfBm can be expressed in terms of the partial sum of fGnX` (Beran 1994):

Bk = X1+X2+X3+ · · ·Xk B0 = 0

and without loss the generality, we assume that〈X`〉 = 0 and denoteσ 2 = 〈X2
`〉 for all

16 ` 6 N − 1. Hence,

NB̂k = X1+ 2X2+ · · · + (k − 1)Xk−1− (N − k)Xk − [N − (k + 1)]Xk+1 · · ·
−[N − (N − 1)]XN−1.

It is convenient to introduce a matrix relation betweenX’s andB̂ ’s (Yeh and Isihara 1969):

B̂k =
N−1∑
`=1

ψk`X` (9)

where

ψk1 = 1/N,ψk2 = 2/N, . . . , ψk,k−1 = (k − 1)/N

and

ψk,k = −(N − k)/N,ψk,k+1 = −[N − (k + 1)]/N, . . . , ψk,N−1

= −[N − (N − 1)]/N = −1/N.

Therefore, the random variablêBk is Gaussian since it is the sum ofN−1 Gaussian random
variables,{X`}, with a multivariate Gaussian distribution

P({X`}) = 1

(2π)(N−1)/2D1/2
exp

[
− 1

2D

N−1∑
i,j=1

θijXiXj

]
(10)

in which θij is the cofactor (inverse matrix) of the element(ij) in the matrix [γij ] (Beran
1994):

γij = 〈XiXj 〉 = σ 2

2
[(i − j − 1)2H − 2(i − j)2H + (i − j + 1)2H ] (11)
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andD is the determinant of the matrix [γij ]. The following calculations for the mean and
variance ofB̂ ’s only require the use of equation (11):

〈B̂k〉 =
〈 N−1∑
`=1

ψk`X`

〉
=

N−1∑
`=1

ψk`〈X`〉 = 0 (12)

and

〈B̂hB̂k〉 =
〈 N−1∑
`,m=1

ψh`ψkmX`Xm

〉
=

N−1∑
`,m=1

ψh`ψkm〈X`Xm〉

= σ 2

2

N−1∑
`,m=1

ψh`ψkm[(`−m− 1)2H − 2(`−m)2H + (`−m+ 1)2H ]. (13)

Therefore, thekth segment (step) in aN -step 2dfBm is Gaussian distributed with its
expectation at the centre of gravity, and variance

〈B̂k〉2d = σ 2
N−1∑
`,m=1

ψk`ψkm[(`−m− 1)2H − 2(`−m)2H + (`−m+ 1)2H ]. (14)

Figure 1 shows the mean square distance between thekth segment and the centre of gravity
for various 2dfBm with differentH andN . This distance reaches the minimal atk = N/2.
The figure also indicates that for largeN , the distance is asymptotically proportional to
N2H . In fact, we have the analytical result:

〈B̂k〉2d ∼ 2H(2H − 1)σ 2N2H
∫ 1

0

∫ 1

0

ψη(x)ψη(y)

(x − y)2−2H
dx dy (15)

whereη = k/N , and

ψη(x) =
{
x 06 x 6 η
x − 1 1> x > η.

(16)

The integration in equation (15) is carried out in appendix B which leads to

〈B̂k〉2d ∼ 4H(2H − 1)σ 2N2H
∫ 1

0

∫ x

0

ψη(x)ψη(y)

(x − y)2−2H
dy dx (N →+∞)

= 2σ 2N2H

[
(1− k/N)2H+1+ (k/N)2H+1− 1

2H + 1
+ 1

2H + 2

]
. (17)

For H = 1
2, our calculation is in agreement with the previous result on random polymer

(Yeh and Isihara 1969):

〈B̂k〉H=1/2
2d = σ 2

3N2
[N(N + 1)(2N + 1)+ 6Nk2− 6N(N + 1)k]

≈ 2Nσ 2

3

[
1+ 3

(
k

N

)2

− 3

(
k

N

)]
. (18)

Figure 1 shows that forN = 10, the asymptotic form is already quite accurate.



Letter to the Editor L531

Figure 1. The mean square distance between thekth segment (06 k 6 N ) and the centre of
gravity for aN -step 2dfBm with Hurst coefficientH . VariousN andH are indicated in the
figures. (a) Different H ’s with sameN according to equation (14). Completely superimposed
with the three symbols are three additional curves: 2{[(1−k/N)2H+1+ (k/N)2H+1−1]/(2H +
1) + 1/(2H + 2)} (equation (17)) withH = 0.25, 0.5, and 0.75, respectively. (b) Different
N ’s with sameH . Completely superimposed with the symbols, there is also the curve
2{[(1− k/N)2.5 + (k/N)2.5 − 1]/2.5+ 1

3.5}, representing the asymptotics for largeN .

4. The two-dimensional fractional Brownian random field

We now turn to a second generalization of 1dfBm. Following Sinai (1976), a self-similar,
isotropic two-dimensional fGn is a matrix of identical Gaussian random variablesX1,1, X1,2,
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X2,1, X2,2, . . ., which has the following defining property (Mandelbrot and van Ness 1968):

1

(NM)H

N∑
i=1

M∑
j=1

Xi,j ∼ X1,1 (19)

where ‘∼’ denotes equality in the sense of probability distribution. It can be shown that
whenH = 1

2, the X’s are also independent. In general, 0< H < 1 and theX’s are
correlated.

The two-dimensional fractional Brownian random field(2dfBrf) is defined as the partial
sum of the two-dimensional fGn:

Bh,k =
h∑
i=1

k∑
j=1

Xi,j . (20)

Hence, we have:

〈(Bh,m − Bh,k)2〉 = h2H (m− k)2Hσ 2 = (hm)2Hσ 2+ (hk)2Hσ 2− 2〈Bh,mBh,k〉
where we have assumed, without loss generality,〈X1,1〉 = 0 and denoteσ 2 = Var[X1,1] =
〈X2

1,1〉. Therefore,

〈Bh,mBh,k〉 = σ 2

2
h2H [m2H − (m− k)2H + k2H ]

〈B`,kBh,k〉 = σ 2

2
[`2H − (`− h)2H + h2H ]k2H

and

〈B`,mBh,k〉 + 〈B`,kBh,m〉 = σ 2

2
[(`m)2H + (hk)2H + (`k)2H + (hm)2H

−(m− k)2H (`2H + h2H )− (`− h)2H (m2H + k2H )+ (`− h)2H (m− k)2H ].

Noting that〈XhkX`m〉 = 〈XhmX`k〉 therefore〈BhkB`m〉 = 〈BhmB`k〉. Thus, we finally obtain
the correlation for the 2dfBrf:

〈Bh,kB`,m〉 = σ 2

4
[(`m)2H + (hk)2H + (`k)2H + (hm)2H − (m− k)2H (`2H + h2H )

−(`− h)2H (m2H + k2H )+ (`− h)2H (m− k)2H ]

= σ 2

4
[(`2H − (`− h)2H + h2H )][(m2H − (m− k)2H + k2H )]. (21)

It is interesting to point out that ourBh,k is different from the random field studied by
mathematicians (Kahane 1985).

One can also determine the correlation for the two-dimensional fGn:

〈Xh,kX`,m〉 = 〈(Bh,k − Bh−1,k − Bh,k−1+ Bh−1,k−1)(B`,m − B`−1,m − B`,m−1+ B`−1,m−1)〉

= σ 2

4
[(`− h− 1)2H − 2(`− h)2H + (`− h+ 1)2H ]

×[(m− k − 1)2H − 2(m− k)2H + (m− k + 1)2H ]. (22)

Using the stationarity ofX, we have:

〈X0,0Xm,n〉 = σ 2

4
[(m− 1)2H − 2m2H + (m+ 1)2H ][(n− 1)2H − 2n2H + (n+ 1)2H ] (23)

= σ 2ρH (m)ρH (n) (24)

where ρH (·) is the normalized autocorrelation function for the one-dimensional fGn.
Therefore, we have shown that the autocorrelation function for 2dfBm and two-dimensional
fGn is simply the products of two 1dfBm and two one-dimensional fGn, respectively.
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5. The spectral density of two-dimensional fractal Gaussian noise

Equation (23) leads to the power spectrum of a fGn:

S(f1, f2) =
∞∑

m=−∞

∞∑
n=−∞

ρH (m)ρH (n)e
−2π i(f1n+f2m)

= SH (f1)S
H (f2) (f1, f2 ∈ [− 1

2,
1
2]) (25)

whereSH (·) is the spectral density for one-dimensional fGn, which has a singularity at
f = 0 (Sinai 1976):

SH (f ) = C(1− cos(2πf ))
∞∑

m=−∞

1

|f +m|2H+1
(26)

whereC is a constant. Hence, the asymptotic behaviour ofS(f1, f2) at f1 = f2 = 0 is:

S(f1, f2) ∼ C(f1f2)
1−2H . (27)

6. Discussion

Among the vast literatures on stochastic fractals (Bunde and Havlin 1994), few models
match the mathematical elegance and analytical simplicity of the theory of fBm/fGn. As
a natural generalization of the classical Brownian motion, therefore, fBm deserves further
investigation as a model for strongly correlated physical processes. In this note, we have
studied some basic geometrical properties of 2dfBm, and further generalization to three
dimensions is conceptually straightforward, though algebraically more involved. It will be
interesting to find out whether the three-dimensional theory is a useful model for polymers
in good and bad solvents, where phenomenologicallyH tends to be greater or smaller than
0.5, respectively (Flory 1969, de Gennes 1979). The theoretical investigations on polymer
chains have utilized a wide range of modern approaches, including field theory formalism
(Edwards 1992), renormalization group (Aronovitz and Nelson 1986), series expansions
(Nemirovskyet al 1992), and Monte Carlo simulation (Wittmeret al 1998).

We have also generalized the 1dfBm to a two-dimensional random field. Based on the
self-similarity given by Sinai (1976), we have shown that the 2dfBrf is simply the product
of two 1dfBms. Further generalization to higher dimensions is again straightforward.
With these generalization, we expect that the mathematical theory of fBm will become
an increasingly useful model in studying scientific problems ranging from the physics of
membrane (Lipowski 1991) to correlated blood flow distribution in mammalian organs
(Bassingthwaighteet al 1994).

We would like to thank Professor Rich Bass, Professor Don Percival, Professor Ron Pyke,
Professor Joe Rudnick and Professor David Thouless for discussions. This work was
supported by the NCRR-NIH grant RR-1243.

Appendix A. Calculation of the asymmetry of 2dfBm

To compute equation (7), we first note some basic properties of Gaussian processes in
general and fBm in particular. For a Gaussian stochastic process, all the joint distributions
are multivariate Gaussian distributions. For any multivariate Gaussian random variables
ξ1, ξ2, . . . , ξN with 〈ξk〉 = 0 (k = 1, 2, . . . , N), their moments with order higher than 2 can
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all be expressed in terms of the second-order correlation (Cantrell 1970); this is known as
the Wick’s theorem in physics and Isserlis theorem in statistics (Reichl 1980):

〈ξ1ξ2 . . . ξN 〉 =
∑
P

N∏
j=1

〈ξj , ξPj 〉 (28)

where the sum runs overall permutationsP : j → Pj of the integersj = 1, 2, . . . , N .
Specifically,

〈ξhξiξj ξk〉 = 〈ξhξi〉〈ξj ξk〉 + 〈ξhξj 〉〈ξiξk〉 + 〈ξhξk〉〈ξiξj 〉. (29)

The second-order correlation for fBm with zero expectation is

〈BhBk〉 = ρH (h, k) = σ 2

2
[h2H − (h− k)2H + k2H ]. (30)

ForH = 1
2, we haveρ1/2(h, k)=σ 2 min(h, k), and

〈BhBkB`Bm〉 = σ 4h(2k + `) h 6 k 6 ` 6 m. (31)

Combining equations (7), (3), (4), (2), and (29), we have

〈(λ1− λ2)
2〉 = 8

N2

∑
i,j

ρ2
H (i, j)−

16

N3

∑
i,j,k

ρH (i, k)ρH (j, k)+ 8

N4

(∑
i,j

ρH (i, j)

)2

and

〈(λ1+ λ2)
2〉 = 4

N2

(∑
i

ρH (i, i)

)2

+ 4

N2

∑
i,j

ρ2
H (i, j)−

8

N3

∑
i,j

ρH (i, j)
∑
k

ρH (k, k)

− 8

N3

∑
i,j,k

ρH (i, k)ρH (j, k)+ 8

N4

(∑
i,j

ρH (i, j)

)2

in which

ρH (i, j) = σ 2

2
[i2H − (i − j)2H + j2H ]. (32)

Therefore using the Euler–Maclaurin summation formula we have largeN asymptotics
(Bender and Orszag 1978):∑
i

ρH (i, i) = σ 2
∑
i

i2H ∼ σ 2N2H+1

2H + 1

∑
i,j

ρH (i, j) ∼ σ 2N2H+2

2H + 2∑
i,j

ρ2
H (i, j) ∼

σ 4N4H+2

2H + 1

[
4H + 3

4(4H + 1)
− B(2H + 1, 2H + 2)

]
∑
i,j,k

ρH (i, k)ρH (j, k) ∼ σ 4N4H+3

2(2H + 1)2

[
H

H + 1
+ 1

4H + 3
+ (2H + 1)2

2(4H + 1)

+B(2H + 2, 2H + 2)− (2H + 1)B(2H + 1, 2H + 2)

]
where

B(p, q) =
∫ 1

0
tp−1(1− t)q−1 dt = 0(p)0(q)

0(p + q)
is the Beta function (Abramowitz and Stegun 1965). We finally have:

Asy ≈ 2−
1

2(H+1)2

1
2(H+1)2 + 2H+1

4(4H+1) − 1
4H+3 − B(2H + 2, 2H + 2)

. (33)
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Appendix B. Calculation of the integration in equation (15)

Note that ∫ η

0

∫ x

0

xy dy dx

(x − y)2ν =
η4−2ν

(1− 2ν)(2− 2ν)(4− 2ν)

and∫ η

0
x dx

∫ 1

η

(y − 1) dy

(x − y)2ν =
(1− η)3−2ν + η3−2ν − 1

(1− 2ν)(2− 2ν)(3− 2ν)
− (1− η)4−2ν + η4−2ν − 1

(1− 2ν)(2− 2ν)(4− 2ν)
.

Therefore,∫ 1

0

∫ x

0

ψη(x)ψη(y)

(x − y)2−2H
dx dy =

∫ η

0

∫ x

0

xy dy dx

(x − y)2−2H
+
∫ η

0

∫ 1

η

x(y − 1) dy dx

(x − y)2−2H

+
∫ 1

η

∫ x

η

(x − 1)(y − 1) dy dx

(x − y)2−2H

=
∫ η

0

∫ x

0

xy dy dx

(x − y)2−2H
+
∫ η

0

∫ 1

η

x(y − 1) dy dx

(x − y)2−2H
+
∫ 1−η

0

∫ x

0

xy dy dx

(x − y)2−2H

= (1− η)2H+1+ η2H+1− 1

(2H − 1)(2H)(2H + 1)
+ 1

(2H − 1)(2H)(2H + 2)
.
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